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Abstract Quantifying the impact of land use and cover (LUC) change on catchment hydrological
response is essential for land-use planning and management. Yet hydrologists are often not able to present
consistent and reliable evidence to support such decision-making. The issue tends to be twofold: a scarcity
of relevant observations, and the difficulty of regionalizing any existing observations. This study explores
the potential of a paired catchment monitoring network to provide statistically robust, regionalized
predictions of LUC change impact in an environment of high hydrological variability. We test the
importance of LUC variables to explain hydrological responses and to improve regionalized predictions
using 24 catchments distributed along the Tropical Andes. For this, we calculate first 50 physical catchment
properties, and then select a subset based on correlation analysis. The reduced set is subsequently used to
regionalize a selection of hydrological indices using multiple linear regression. Contrary to earlier studies,
we find that incorporating LUC variables in the regional model structures increases significantly regression
performance and predictive capacity for 66% of the indices. For the runoff ratio, baseflow index, and slope
of the flow duration curve, the mean absolute error reduces by 53% and the variance of the residuals by
79%, on average. We attribute the explanatory capacity of LUC in the regional model to the pairwise
monitoring setup, which increases the contrast of the land-use signal in the data set. As such, it may be a
useful strategy to optimize data collection to support watershed management practices and improve
decision-making in data-scarce regions.

1. Introduction

Quantifying the impacts of land use and land cover change (LUCC) on the water cycle is still fraught with
difficulties, and hydrologists are not able to present consistently reliable evidence to support management
decisions. Although a large body of research on LUCC effects exists, in general there is still a paucity of evi-
dence that unambiguously links them with hydrological nonstationarity in individual catchments [e.g.,
O’Connell et al., 2004, 2007; Bulygina et al., 2009; Bearup et al.,, 2014; Biederman et al., 2015; Livneh et al.,
2015]. Given that much of the earth’s surface is ungauged or poorly gauged [Fekete and Vorosmarty, 2007;
Wohl et al., 2012], the uncertainty about LUCC impacts is further exacerbated in sparsely gauged regions
[Sivapalan, 2003; Visessri and Mcintyre, 2016].

Evidence of LUCC impacts is commonly obtained by analyzing the dynamics of the hydrological response
of an individual catchment, but this approach has several problems including interference of climate vari-
ability [Larup et al.,, 1998], the gradual nature of changes that could take many years to reach equilibrium
[Ashagrie et al., 2006], and therefore require long-term records before and after the change. Using pairwise
catchment comparisons helps alleviating these problems. The ideal monitoring setup consists of a baseline
period in which two catchments are under the same land-use, and an evaluation period in which one catch-
ment’s land-use is changed. In practice, this still requires long monitoring times and control over the land-
use of a catchment, which is often not practical. An alternative to this setup, is to ‘trade space for time’ [e.g.,
Buytaert and Beven, 2009, 2011; Oudin et al., 2010; Singh et al., 2011; Sivapalan et al., 2011], and to consider
paired, collocated, catchments with different land-use types. While such a setup makes it much more diffi-
cult to attribute observed differences to land-use impacts, the catchments can be selected in such way that
their size, shape, topography, soils, and climate are as similar as possible, such that land use and land cover
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(LUQ) are the major (known) source of variability [Célleri et al., 2010]. Although in practice catchments are
unique [Beven, 2000] and therefore any differences observed between them can never be attributed for cer-
tain to differences in land-use, this approach is much more efficient and straightforward to implement. An
additional advantage is that it provides more rapid results to feed into the decision-making process.

Direct approaches to assessing the impact of LUCC on the hydrological response include the comparison of
flow statistics over time and space. For instance, hydrological regulation can be assessed by comparing the
Flow Duration Curves (FDC) of catchments under different LUC regimes: a steep slope may indicate high
flashiness of the hydrological response to input precipitation, whereas a more horizontal curve may repre-
sent a buffered behavior and larger storage capacity [Brown et al., 2005; Yadav et al., 2007]. However, this
approach cannot explicitly deal with other differences between the catchments such as topography, and
neither does it allow to correct for nonstationarity in boundary conditions [e.g., Beck et al., 2013a]. Although
the use of rainfall-runoff models is an alternative that allows more explicit incorporation of catchment char-
acteristics and climatic nonstationarity [Lerup et al. 1998; Schreider et al., 2002; Hundecha and Bardossy,
2004], such models have data requirements that are often problematic in data scarce environments
[Wooldridge et al., 2001; Wagener and Wheater, 2006; Samaniego et al., 2010]. Alternatively, pooling of catch-
ments may be a way to reduce the impact of uncontrolled variability such as topography in the statistical
analysis, and to increase the statistical strength of the variable of interest (i.e., LUC).

Such pooling, commonly known as regionalization [Wagener and Wheater, 2006; Yadav et al., 2007], is most
often applied in the context of prediction in ungauged basins [Sivapalan, 2003; Beck et al., 2013b]. The
regionalization can be seen as an exercise in addressing nonstationarity (between donor and receptor
catchments), which is conceptually similar to predicting the impact of LUCC (i.e., nonstationarity between
the old and new land-use). Two regionalization approaches are typically used to account explicitly for differ-
ences between receptor and donor catchments [Bulygina et al., 2009, 2011]: (i) dependence of rainfall-
runoff model parameters on catchment physical characteristics [e.g.,, Lamb and Kay, 2004; Mcintyre et al.,
2005; Parajka et al., 2005; Lee et al., 2006; Young, 2006], and (ii) dependence of hydrological indices (also
referred to as streamflow signatures in hydrological literature) on catchment physical characteristics [e.g.,
Berger and Entekhabi, 2001, Shamir et al., 2005, Bardossy, 2007; Yadav et al.,, 2007; Visessri and Mcintyre,
2016].

The first approach uses knowledge on how rainfall-runoff model parameters vary spatially [e.g., Wagener
and Wheater, 2006; Wagener, 2007; Beven, 2007; Buytaert and Beven, 2009]; however, parameter identifiabil-
ity is evidently affected by model structural error and parameter interaction during calibration [Beven and
Freer, 2001; Mcintyre et al.,, 2005; Beven, 2006]. Recently, Samaniego et al. [2010] have found promising
results to address the nontransferability of parameters across scales by introducing a multiscale parameter
regionalization technique to consider the difference in sizes of catchments included in the pooling. Another
problem related to lumped rainfall-runoff models is that parameters have generally no direct physical
meaning, which makes it difficult to identify from the regionalization the sought links with a physical
change [Mcintyre et al., 2014]. This has led LUCC effects to be based on speculative changes in catchment-
scale rainfall-runoff model parameters [Packman et al., 2004].

The second approach relies on relationships between catchment attributes and hydrological indices [e.g.,
Mazvimavi et al., 2005; Longobardi and Villani, 2008; van Dijk, 2010; Pena-Arancibia et al., 2010; Ahiablame
et al., 2013; Beck et al., 2013b]. The major advantages of this regionalization procedure are that it: (i) is not
specific to any rainfall-runoff model (thus not impacted by its model structural error) [Bulygina et al., 2012];
(ii) allows the inclusion of most commonly available hydrological information [Zhang et al., 2008]; (iii) does
not establish relationships with conceptual rainfall-runoff model parameters (that are potentially affected
by nondentifiability and equifinality during calibration) [Yadav et al., 2007]; (iv) estimates an explicit link
between the catchment's physical properties as controls of its hydrological behavior [Yadav et al., 2007;
Visessri and Mcintyre, 2016]; and (v) provides an estimate of the error variance on which analyze uncertainty
[Visessri and Mcintyre, 2016]. As a result, such regional models have been widely adopted (e.g., the BFIHOST
classification in the UK [Boorman et al., 1995] and the Curve Number in the US [USDA, 1986]). Additionally,
some studies have investigated the calibration of rainfall-runoff model parameters by including hydrologi-
cal index estimations in the objective functions [e.g., Zhang et al., 2008], and others have established formal
probabilistic methods to integrate data from different sources and assess uncertainty in the modeling
[Bulygina et al., 2009, 2011, 2012].
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Although regionalization methods can be used to test the capacity of rainfall-runoff models to assess and
predict the impacts of LUCC, in practice the identification of LUCC signals in the hydrological response is
still problematic [e.g., Merz and Bloschl, 2009], especially for larger catchments. While previous studies have
investigated the regionalization of hydrological indices, the conclusions about the importance of specific
catchment attributes vary strongly [Beck et al., 2013b; McIntyre et al., 2014], and particularly on the impor-
tance of LUC variables as predictors in the regionalization [e.g., Visessri and Mcintyre, 2016]. One reason for
the difficulty of finding a statistically significant contribution of LUC variables, to explain catchment variabili-
ty in a regionalization exercise, may be the heterogeneity within catchments used for regionalization. In
consequence, in catchments where different land-uses and vegetation covers are mixed indistinctively, the
particular effects of LUC and changes therein are more challenging to identify. Additionally, LUCC signals
will often be difficult to separate from other spatially varying processes that affect the hydrological
response, such as topography, soils, and climate.

Therefore, we hypothesize that the use of monitoring data from pairwise catchment setups may be a way
to increase the contrast of LUCC signals in a regionalization exercise, and thus makes it increasingly likely to
find a statistically significant relation between LUC variables and the hydrological response. In a regionaliza-
tion context, a pairwise catchment setup has two main advantages: it increases the homogeneity of LUC
within each catchment, and it compares catchments that are as similar as possible in all other physical char-
acteristics (including climate). To test this hypothesis, the remainder of the paper is structured as follows:
first we introduce a regionalization model that includes LUC as explanatory variables; this model is then
applied to a network of 24 paired catchments in the tropical Andes defined according to the principles pre-
viously outlined; and the obtained are then discussed.

2. A Regionalization Model for a Network of Paired Catchments

2.1. Selection of Hydrological Indices for LUCC Assessment

A wide range of indices exists to summarize the dynamics of the hydrological regime in catchments with
different conditions. In principle, they attempt to represent relevant characteristics or alteration signals in
catchment properties in means of hydrological information of streams [Hughes and James, 1989; Poff and
Ward, 1989; Richards, 1989, 1990; Poff, 1996; Richter et al., 1996, 1997, 1998; Clausen and Biggs, 1997, 2000;
Wood et al.,, 2000; Gippel, 2001; Mathews and Richter, 2007; Beck et al., 2013a]. Following Poff and Ward
[1989] and Richter et al. [1996] the flow regime is grouped in five widely accepted components: (i) magni-
tude, (ii) frequency, (iii) duration, (iv) timing, and (v) rate of change in flow events. Olden and Poff [2003]
have extended this classification with subcategories for average, low, and high flows.

The selection of hydrological indices should focus on streamflow characteristics that respond to the contex-
tualized practical issue, for instance, those that are most susceptible to change under LUCC [Archer et al.,
2010]. Previously, watershed management was related to limited information obtained from streams, espe-
cially about quality and only one aspect of quantity, the minimum flow [Poff et al., 1997]. Clausen and Biggs
[1997], Buytaert et al. [2007] and Ochoa-Tocachi et al. [2016] are good examples of simple calculations of
hydrological indices that put on evidence relevant LUCC effects. However, one issue about the selection of
hydrological indices, especially in regionalization studies, is their interdependence [Almeida et al., 2016].
Indices should be relatively independent and well-defined among catchments so that relationships with
physical catchment properties minimize ambiguity [Sefton and Howarth, 1998; Bulygina et al., 2009]. Another
challenge in the context of LUCC assessment is that changes of practical interest may occur at different
scales than those at which the hydrological indices are estimated and regionalized [Bulygina et al., 2009].
The challenge is therefore to identify adequately informative, independent, and well defined hydrological
indices for robust regional relationships.

Olden and Poff [2003] compiled 171 hydrological indices and performed Principal Component Analysis
(PCA) using 36 years of daily streamflow data from 420 catchments in the US. The PCA was leveraged to
inspect the governing intercorrelation patterns between variables and to determine subsets that explain
the major sources of variation while minimizing redundancy. The disadvantages of PCA are the assumptions
of linear combination among variables and normality in data. Their study resulted in 25 indices being listed
under the first four principal components, which explained 75% of the original variance [Olden and Poff,
2003]. This approach becomes useful for hydro-ecological studies by supporting the selection of high-
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informational and nonredundant variables for a particular region [Sefton and Howarth, 1998; Yadav et al.,
2007].

2.2. Robust Regionalization of Hydrological Indices to Assess LUCC Impacts

Although relationships between physical catchment properties and hydrological indices can be done by dif-
ferent approaches [e.g., Parajka et al., 2013], linear regression is one of the most straightforward and com-
mon methods [Berger and Entekhabi, 2001; Yadav et al., 2007; Visessri and Mcintyre, 2016]:

[=Bo+B1Ci+BCot - + B, 1 CprFe )

where /; is the expected value of the /" hydrological index, C;, G5, . . ., Cp-7 are p—1 physical catchment prop-
erties, Bo, f1, P2 - ... Pp-1 are the p regression coefficients, and ¢ is an error term.

A forward stepwise regression technique is generally adopted to discard variables that do not significantly
contribute to the index prediction using a critical p-value of 0.05 [Yadav et al., 2007; Visessri and Mcintyre,
2016]. However, Visessri and Mcintyre [2016] point that this procedure may remove predictors that have
physical significance due their potential high interdependency with other descriptors. To ensure robustness
in the regional models, catchment properties must be both statistically significant and physically important
to explain the hydrological indices.

In this study, we implement this regression model to assess the statistical significance of LUC as explanatory
variables. The approach consists of the following steps:

1. Data were obtained from a monitoring network of paired catchments that cover a wide range of physi-
cal, climatic, and LUC characteristics in the studied region;

2. Comprehensive sets of physical catchment descriptors and hydrological indices were calculated;

3. Redundancy assessment to analyze multicollinearity and reduce the number of descriptors to a manage-
able size (i.e., lower than the number of catchments used);

4. Regionalization of hydrological indices against physical and climatic properties with and without the
consideration of LUC variables;

5. Leave-one-out cross-validation of the regional models; and,

6. Analysis and discussion of the physical meaning of LUC variables in the resulting regression model
structures.

It should be noted that our model is not a pairwise comparison in a statistical sense, which would require
the regionalization of the within-pair differences of each catchment characteristic. In a statistical pairwise
comparison, pairs are assumed to be identical except for the treatment, which is clearly problematic for
catchments [Beven, 2000]. Instead, we treat each catchment as an independent observation in the linear
regression model and, rather than questioning the difference between two paired catchments, the collec-
tive differences within a pool of paired catchments are statistically analyzed. We hypothesize that the geo-
graphical vicinity of catchments, with similar physical properties but contrasting LUC, enhances the LUCC
signal within the data set and thus increases the predictive capacity of LUC as descriptor variables in the
regression model.

3. Materials and Methods

3.1. Study Region

We tested our methodology in the Tropical Andes, which is a region characterized by a remarkable natural
variability in biogeography and meteorology and thus exhibits diverse hydrological processes. Ecologically,
natural Andean ecosystems are encompassed in five large landscape units [Cuesta et al., 2009], from which
we consider high Andean grasslands with some forest occurrences. The entire region is affected by com-
mon issues of land degradation, compaction and erosion, as a result of conversion to grazing, cultivation or
afforestation fields. Therefore, it is particularly challenging from a management perspective.

We used 24 catchments sized between 0.5 km? to 7.8 km? and distributed in 9 sites along the studied
region (Figure 1). The catchments are located between 0° and 18° south, covering an elevation range from
2500 m to 5000 m altitude. Sites are rural and without water abstractions or stream alterations. Shapes are
typically oval tending to circular or stretched. Slopes are generally steep and uneven. The vegetation cover
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Figure 1. Map of the Tropical Andes with the iMHEA's catchments used in this study. The color-coding is used for relating to the site location, n is the number of catchments in each

site, and the dates are the monitoring periods (mm/yyyy). The plots show, clockwise from top, average monthly precipitation, maximum rainfall intensity-duration curves, flow duration
curves, and average monthly discharge for all catchments.

consists of tussock and short grasses, patches of shrubs, native, and exotic forest, eventual crop occurrences
and small wetlands. The main land uses are grazing, conservation, forestation with exotic species, and culti-
vation (see a throrough description in Ochoa-Tocachi et al. [2016]).

The catchments feature a characteristic high tropical mountain climate regime. [Viviroli et al., 2007; Ochoa-
Tocachi et al., 2016]. Seasonal variability is diverse, mainly low in catchments close to the equator, while cli-
matic intraday ranges are larger [Buytaert et al., 2006a; Cordova et al.,, 2015]. In general, their hydrological
response is mainly driven by precipitation and strongly related to their soil conditions, with rainfall intensi-
ties typically lower than soil infiltration [Buytaert et al., 2005]. The catchments share a baseflow soil-
dominated response due to the virtual absence of infiltration excess overland flow [Crespo et al., 2010] and
the presence of underlying impermeable bedrock that minimize deep infiltration and groundwater storage
[Buytaert et al., 2007]. Large water yields have been reported in natural catchments [Buytaert et al., 2006a;
Ochoa-Tocachi et al., 2016], and have been linked to the extent of wetlands likely due to the occurrence of
saturation excess flow [Mosquera et al. 2015]. Buytaert and Beven [2011] also mention processes triggered
by thresholds such as hydrologically disconnected storages found within the catchment microtopography,
and nonstationarity in evapotranspiration, infiltration, and routing produced by growing vegetation.

3.2. Monitoring Setup

The catchments are part of a participatory network of collocated research basins in Andean ecosystems
(known as iMHEA by its Spanish abbreviation) allowing monitoring in many regions that would otherwise
be prohibitively expensive or impractical [Célleri et al., 2010]. The generated data are aimed at evaluating
the effects of LUCC over ecosystem hydrology. Typically, one catchment is chosen such that it is representa-
tive for a reference state, while its pair represents the land-use or management practice to be evaluated.
The network focuses on small catchments with homogeneous LUC in at least 75% of its surface. Key physi-
cal characteristics are surveyed at the beginning of the monitoring period.

Precipitation is measured with at least 2 and typically 3 tipping bucket rain gauges (resolution of 0.254 mm
or better) at a height above ground level of 1.50 m and distributed in the catchment areas to account for
the high spatial variability of rainfall [Buytaert et al., 2006b, Célleri et al., 2007]. Correlation between the mul-
tiple rain gauges within each catchment allows for detecting and correcting errors, filling data gaps, and
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obtaining reliable averaged values. Streamflow is measured at the outlet of each catchment using com-
pound triangular-rectangular weirs equipped with pressure transducers. Water level is recorded at an inter-
val of at least 15 min and generally 5 min. The lengths of the monitoring for each site are shown in Figure 1.

3.3. Calculation of Catchment Characteristics and Hydrological Response Indices

A set of 50 physical and climatic descriptors was calculated for all catchments (Figure 2). Characteristics are
grouped by shape, drainage, elevation, topography, meteorology, rainfall intensity, land cover and land use.
In contrast to studies in relatively well-gauged regions, many countries suffer from data-scarcity (e.g., in soil
hydrological properties, [Visessri and Mcintyre, 2016]), which affects the regionalization approach. Shape,
drainage, and LUC variables were derived from available geographic data. Elevation and slopes were calcu-
lated using contour lines at 40 m vertical resolution from national cartographic data. Land cover (LC) per-
centages were classified in three distinctive categories, and land use (LU) was based on a straightforward
division of 0 (absent) and 1 (present) use. Despite the limited classification of LUC variables used (Figure 2),
they represent the main interventions in the region, which have been linked to impacts on the hydrological
response in the available literature [Célleri, 2010].

The tipping bucket rainfall data were interpolated by a composite cubic spline on the cumulative rainfall
curve [Sadler and Busscher, 1989; Ciach, 2003; Wang et al., 2008; Padrén et al., 2015] and aggregated at inter-
vals compatible with discharge. Rainfall intensities were calculated using a 5 min scale moving window for
durations between 5 min and 2 days. The seasonality index [Walsh and Lawler, 1981] was computed and
normalized between 0 and 1. Reference evapotranspiration was calculated using Worldclim temperature
data [Hijmans et al., 2005] and the Hargreaves formula [Hargreaves and Samani, 1985; Allen et al., 1998].

A set of 50 hydrological indices (Figure 3) was derived from averaged daily discharge data normalized by
catchment areas. The indices were extracted from the review provided by Olden and Poff [2003], including
the commonly used Indicators of Hydrologic Alteration [Richter et al., 1998], and complemented with those
of interest of the IMHEA partners, such as the Richards-Baker Flashiness Index [Baker et al.,, 2004]. Most of
the magnitude indices are normalized by the median daily flow (MA2) to provide nondimensional compara-
ble values for the first statistical moment. Coefficients of variation (standard deviation divided by mean) for
different flow components (MA3, ML21, ML18, DL17, DH16, TL2) represent the second moment. Skewness
of daily flows (MA5=mean/median) provides an estimate of the third moment. Frequency, magnitude,
duration, and variability in pulses above and below given thresholds in the hydrograph were similarly calcu-
lated at a daily basis [Poff, 1996].

3.4. Selection of Variables for Regionalization

The commonly adopted criteria for selecting catchment descriptors in regionalization studies are data avail-
ability and expected physical relationship with the predicted hydrological indices [Sefton and Howarth,
1998; Wagener and Wheater, 2006; Young, 2006; Yadav et al., 2007; Visessri and McIntyre, 2016]. While linear
regressions may allow for dependence between predictors, interpreting their significance in a multilinear
regression is complicated by high inter-dependencies. As seen in Figure 2, the 50 physical and climatic char-
acteristics are highly correlated within each category. To reduce the number of descriptors while selecting
nonredundant high-informative variables, Yadav et al. [2007] used Spearman [1904] correlation coefficients
(p) to explore pairwise patterns of variability. Analogously, we discarded variables based on a threshold for
p of =0.75 and p-values on a significance level of 5% under the null-hypothesis of no correlation.

The application of linear regressions generally involves the assumption of normally distributed random
errors, in this case, attributed to natural variability in hydrological response (i.e., aleatoric uncertainty) and
the limited number of physical descriptors used in their estimation (i.e., epistemic uncertainty) [Bulygina
et al., 2011]. Kjeldsen and Jones [2010], Visessri and Mcintyre [2016], and Almeida et al. [2016] provide thor-
ough error descriptions in hydrological regressions and the former study addresses the issue of data-
transferability. In contrast to sampling errors derived from the data used to calculate a hydrological index,
they highlight that each different selection of catchment descriptors would produce a particular regression
error structure. In practice, variables are generally skewed and data transformations are needed to approxi-
mate normal distributions [Beck et al., 2013b]. Therefore, to improve the results of the linear regressions and
to avoid bias in the estimates, we primarily retained those descriptors that better approximate normality
(Figure 4).
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Descriptor Definition  Unit Min Normalized Boxplot Max
Location
LAT Geographic latitude  ° 1726 | ————=mCm——- -0.18
Shape
1 AREA Area km® 059 [—=C—— © o] 7.80
2 PER Perimeter km 3.0 [—mmom— o 12.13
3 CcC Compactness coefficient - 1.14 [—m=Ommm——— 154
4 KF Shape factor from stream length - 0.30 [©Om— o4 11.16
5 KF2 Shape factor from equivalent rectanige - 0.19 [—=mCOmmm——— (0.77
6 RC Circularity ratio - 042 [———=mCmm—— (077
7 RE Elongation ratio  km” 0.19 oo —O— 0o  1.00
8 L1RE Large dimension of equivalent rectangle  km 088 [—=mCOmm—— 421
9 L2RE Small dimension of equivalent rectangle  km 047 ——=om—— P 195
Drainage
10 LDP Longest drainage path  km 024 |—==Cmm—— 393
11 LPL Longest line parallel to the main stream  km 098 —&— Q- 9.72
12 DD Drainage density km™ 043 |—Cmm— o O 398
13 FR Current frequency km™ 026 [—Xommm——— 463
14 TC Concentration time _ h 220 |—=om— %01 11.60
Elevation
15 HMAX Maximum elevation masl 3200 (——— ==mCOmm—— 4840
16 HMIN Minimum elevation (at gauging station) masl 2682 ————mmommm—— 4280
17 HMEAN Mean elevation masl 3045 [——— mmmmOmm—— 4560
18 HDIFF Elevation difference  masl 150 [——=mCOmm——— 875
19 WTALT Weighted average of elevation masl 3047 [—— mmCmm—— 4525
20 ALT95 95th Percentile of elevation (95% of area above) masl 2814 [———mmmOmm—— 4465
21 ALTS 5th Percentile of elevation (5% of area above) masl 3114 ———=mmOmm—— 4648
Topography
22 HYPSO Slope 33%-66% in hypsometric curve / HMEAN - 060 (—=omm—— 574
23 SLPE Average catchment slope % 1265 |—mmCOmmm—— 64.30
24 SLPE2 Catchment slope estimated from 2*HDIFF/PER % 641 ——=Om—— o 34.88
25 SLPC Stream mean slope % 6.62 ——mCmm———— 5428
26 RHL Relief ratio - 0.05 ——=mOmm——— 048
27 SVAR Slope variability index - 0.38 ——=mCOm—— 0.87
28 ITOPG1 General topog. index = log(AREA/tan(beta)) km? 0.22 L0 4.29
29 ITOPG2  General topog. index 2 = log(AREA/tan(HYPSO/LC)) km’ 0.62 . 5.13
Meteorology
30 ETYEAR Annual reference evapotranspiration mm 765 [——mOm—m—— 1374
31 RPPE Ratio between PYEAR and ETYEAR - 049 [—EOm— o 227
32 PYEAR Average annual precipitation ~mm 613 —=COm—— O O 2677
33 DAYPO Percentage of days with zero precipitation - 0.13 [— o= (.69
34 PMDRY Precipitation of driest month  mm 0.00 —EEOEEm———— 7553
35 SINDX Seasonality index (0:none to 1:extreme) - 0.13 O (.51
36 PVAR Coefficient of variation in daily precipitation - 1.32 —EOm———- 286
Rainfall intensity
37 RMED1D Median annual maximum 1-day precipitation ~mm 17 —=om— © O+ 7838
38 RMED2D Median annual maximum 2-day precipitation mm 26.12 ——Om— ® 04 11752
39 RMED1H Median annual maximum 1-hour precipitaton mm 6.75 [—EOmS———— 2152
40 iIMAX1D Maximum 1-day precipitation intensity mm h™ 117 [——xOm—O o4 573
41 iIMAX2D Maximum 2-day precipitation intensity mm h' 077 ——m— o o 4.35
42 iMAX1H Maximum 1-hour precipitation intensity mm h' 11.30 [—=Oommmm—— 3560
43 iIMAX15M Maximum 15-min precipitation intensity mm h' 2523 ——%om— O O 87093
Land cover
44 LCcrass Grass, tussock grass, and short vegetation % 10 [0 ————==mOm—— 100
45 LCroresT Native and exotic forest, crops, and tall vegetation % 0 HEom—— 0o 90
46 LCwetLanD Wetlands, lagoons, and saturated areas % 0 HOomms —— 25
Land use
47 LUn Natural or conservation - 0 [Oo——
48 LUa Cultivation - 0o @ o 1
49 LUg Grazing - 0 [e——
50 LUe Afforestation - 0 @ o1 1

Figure 2. Physical and climatic characteristics of the studied catchments. In the boxplots, the target symbol represents the median, the black box is limited by the 25™ and 75™ percen-
tiles, the whisker corresponds to =2.7¢ and extends to the adjacent data value that is not an outlier, and outliers are shown as white circles. The axis limits for each variable are given by
the maximum and minimum values from the catchment data.

While physical characteristics may be relatively independent, this is not completely the case for hydrological
indices as they are calculated from the same streamflow data [Olden and Poff, 2003]. Three indices, which
are generally used in hydrological studies and watershed management, were selected for further study. The

OCHOA-TOCACHI ET AL. REGIONALIZATION USING PAIRED CATCHMENTS 6716



@AG U Water Resources Research

10.1002/2016WR018596

Index Definition  Unit Min Normalized Boxplot Max
iMHEA Hydrological Indices
Water yield

1 QDMIN Minimum daily flow 1s" km? 0.00 |-#»— ©o o ©{ 932

2 Q95 5th percentile flow from FDC  1s'km? 0.01 (—Cmm—— ®- 978

3 QMDRY Mean daily flow of driest month  Is” km?  0.03 ——C——m————— 1558

4 QDMAX Maximum daily flow Is"'km? 540 [—®=Omms——— 37529

5 Q10 90th percentile flow from FDC  1s'km? 237 [—COmmm—— o 13852

6 QDMY Annual mean daily flow 1s'km? 1.80 [Ommm——— O 5494

7 QDML Long-term mean daily fow |s'km? 173 [—EOmmmm————— 4385

8 Q50 50th percentile flow from IDC (MA2) Is' km? 0.1 —ECO=—m————— 2777

Hydrological regulation

9 BFI Baseflow index - 041 |——=mCOmm— 0.96
10 K Recession constant - 091 o O —xom— 1.00
11 RANGE Discharge range: QDMAX/QDMIN - 7 @ o o 46241
12 R2FDC Slope 33%-66% in flow duration curve (FDC) - -3.33 (o —mmC——  -0.36
13 IRH FDC volume below 50% / FDC total volume - 0.02 |o O 0.91
14 RBI1 Richards-Baker annual flashiness index - 0.04 —=mCOmmm——— (057
15 RBI2 Richards-Baker seasonal flashiness index - 0.04 ——=mCOmmm——— (.57

Water balance
16 DRYQMEAN Dry monthly dischrage ratio (QMmin/QMmean) - 0.01 [—=mOm——— 0.84
17 DRYQWET Dry monthly discharge range (QMmin/QMmax) - 000 —=Om— o4 0.72
18 QYEAR Average annual discharge mm 57 —Ommm—— O 1729
19 RR Runoff ratio: QYEAR / PYEAR - 0.08 ——EmOm———- (.72
Olden and Poff [2003] Hydrological Indices
Magnitude of average, low and high flows
20 MA5 Skewness in daily flows: Mean / Median - 094 |e@ o 36.78
21 MA41 Mean runoff averaged across years | sTkm? 120 |—aCm———————— 40.80
22 MA3 Coefficient of variation in daily flows (QVAR) - 031 —aomm—— o 272
23 MA11 Range between 25th and 75th percentiles / Median - 039 H® o o 19.86
24 ML17 7-day min flow / mean annual daily flows - 0.00 ECo——— 044
25 ML21 Coefficient of variation in 30-day minimum flows - 0.18 ——=mOo=mm—O0 220
26 ML18 Coefficient of variation in ML17 - 023 ——m>om—— OO0 246
27 MH16 High flow discharge: Mean 10th percentile / Median - 119 @0 o o1 9540
28 MH14 Median maximum 30-day daily flow / Median - 1.00 [EO=— o1 1525
29 MH22  Mean high flow volume over 3 times median / Median  days 0 & ©° o 3086
30 MH27 Mean high peak flow over 25th percentile / Median - 1.02 HO®o O+  93.20
Frequency of low and high flows
31 FL3 Pulses below 5% mean daily flow / record length year1 000 (HOmm——©Oo0 o 11.89
32 FL1 Low flood pulse count below 25th percentile  year” 2 o R+ 24
33 FH3  High flood pulse count over 3 times median daily flow year” 0 —=mCm—— 25
34 FH6 High flow events over 3 median monthly flow year1 0 [ 12
35 FH7 High flow events over 7 times median monthly flow year1 0 EOmmm—— §
36 FH1 High flood pulse count above 75th percentile  year” 3 —moms—— o 39
Duration of low and high flows
37 DL17 Coefficient of variation in DL16 - 0.67 |—mom— o+ 263
38 DL16 Low flow pulse duration below 25th percentile days 4 ——COmm— o4 40
39 DL13 Mean of 30-day minima of daily discharge / Median - 033 & o o 8.68
40 DH13 Mean of 30-day maxima of daily discharge / Median - 138 [©@® O O~ 168.80
41 DH16 Coefficient of variation in DH15 - 0.00 O 3.05
42 DH20 High flow pulse duration over median/0.75 days 2 EOmmm———— 42
43 DH15 High flow pulse duration over 75th percentile  days 2 Oomm— o1 55
Timing or predictability
44 TH3 Max proportion of the year with no flood occurrence - 0.16 |——mCr—— o4 1.66
45 TL2 Coefficient of variation in TL1 - 0.00 ——=mmOm——— 1.64
46 TL1 Mean Julian day of 1-day annual minimum _ days 8§ [————=mm(>mm—— 339
Rate of change

47 RA8 Ratio of flow reversals between days - 0.09 [© —mC—— 047
48 RAG6 Diff. of log of increasing flows of 2 consecutive days | s'km? 002 [—=— @ O 0.50
49 RA5 Ratio of days where flow is higher than the previous - 0.13 [ =mOm—— (.41
50 RA7 Diff. of log of decreasing flows of 2 consecutive days | s'km? -031 r® ——mOm— .0.01

Figure 3. Hydrological indices of the studied catchments. In the boxplots, the target symbol represents the median, the black box is limited by the 25" and 75 percentiles, the whisker
corresponds to *£2.7¢ and extends to the adjacent data value that is not an outlier, and outliers are shown as white circles. The axis limits for each variable are given by the maximum
and minimum values from the catchment data.

runoff ratio (RR) is the relation between average annual discharge and average annual rainfall, and aggre-
gates the effect of different factors on the water yield. The baseflow index (BFI) is the ratio between base-
flow to total flow, and was calculated using the two-parameter algorithm from Chapman [1999] with a filter
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Figure 4. Matrix of histograms, univariate scatter plots and Spearman rank correlation coefficients (p) between the 10 physical and climatic characteristics and the 3 hydrological indices
selected for regionalization. p values that are significant at the 95% level are shown in bold. See Figures 2 and 3 for definitions of the abbreviations. Catchments are color-coded accord-
ing to their location in Figure 1 to help identifying similarities in physical characteristics and differences in hydrological response.

parameter of 0.085. The slope of the FDC (R2FDC) was calculated between the 33 and 66 flow percentiles
in logarithmic scale using the plotting position of Gringorten [1963]. These last two indices are indicators of
hydrological regulation at short and long temporal scales, respectively.

3.5. Regionalization and Model Evaluation
The total set of 50 hydrological indices was regionalized through stepwise regression of equation (1) based
on a reduced set of 10 physical and climatic properties, and then adding LC only and later all LUC variables.
The relative importance of descriptors is commonly quantified as the number of times they occur in
the stepwise regressions (e.g., using cross-validations [Yadav et al, 2007]). However, being the stepwise
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regression necessarily a subjective process, the appearance of specific explanatory variables needs cautious
interpretation. Previous studies [e.g., Merz and Bloschl, 2009; Visessri and Mcintyre, 2016] found little or
ambiguous representation of LUC influences on regionalized hydrological indices. The value of using paired
catchments as independent data points in the common regionalization process increases the potential of
the data set to identify the impact of LUCC. Instead of using these catchments in a classic statistical pairwise
analysis, our discussion focuses on assessing their effectiveness to regionalize the effects on the hydrologi-
cal response by increasing the contrast in LUC variables between collocated, physically similar catchments.

To assess the goodness of fit, the coefficient of determination (ordinary R? [Pearson, 1895]) has been typical-
ly used [e.g., Yadav et al.,, 2007]. However, as descriptors are added to the regression model, R? increases as
the fit improves, producing an “artificial’ idea of success. The adjusted-R? (Rgdj) decreases as predictors are
added to the model structure if the increase in performance does not compensate the loss of degrees of
freedom:

where /*; is the observed hydrological index, /; is the estimated index, /,,, is the average index value between
catchments, W is the number of catchments used, and w is the number of descriptors used in the linear
regression model. The success in performance was quantified as the ratio of models with Rgdj over 0.6, while
the success in improvement due to the inclusion of LUC variables was estimated as the ratio of models
which have had a positive change in RZ;. The width of the 95% confidence intervals (A) derived from the
regressions was used as a measure of uncertainty.

To evaluate the predictive capacity of regional models, a leave-one-out cross-validation was applied for the
3 hydrological indices defined in section 2.4. The explanatory variables were fixed (i.e., keeping the same
model structures identified from the stepwise regression with the 24 catchments), and each catchment was
treated as ‘ungauged’ in turn while its pair was part of the model derivation. The average bias of the regres-
sion models (mean of the absolute values of the residuals between the actual observation and the regional
prediction) and the variance of the residuals were used to compare model performance. Additionally, the

ranges in Rﬁdj and in A from the resulting iterations were also compared between the model structures.

4, Results

4.1. Physical, Climatic and Hydrological Characteristics
The complete sets of catchment properties and hydrological indices, and correlation matrices between the
50 descriptors are available as supporting information.

Physical and climatic properties are shown in Figure 2. Some catchments have particular shape and drain-
age characteristics, for instance, while catchments in LLO have the largest drainage densities (DD), HUA
catchments have particularly low elongation ratios (RE). On the other hand, elevation, slope, and meteoro-
logical characteristics are relatively well distributed among their ranges, exhibiting typical mountainous fea-
tures. As seen in Figure 1, precipitation properties, especially rainfall intensities, are generally grouped by
site. From these results, it was found that (i) the catchments show some consistent and comparable charac-
teristics where key physical features are diverse, (ii) catchment collocation (i.e., latitude, elevation) is a domi-
nant driver of their climate, and (iii) several descriptors within each category are highly correlated and can
be reduced throughout a redundancy assessment.

A large diversity in hydrometeorological characteristics can be seen in Figures 1, 2 and 3. Annual precipita-
tion ranges from 613 mm to 2677 mm, with a wetness index (RPPE) between 0.49 and 2.27. The rainfall sea-
sonality index (SINDX) ranges from 0.13 to 0.51, while maximum daily intensities present medians
(RMED1D) between 17.1 mm h™ " and 78.4 mm d~". Average flows range from 1.7 [ s~ ' km 2 to 4391 s™'
km 2, with maxima up to 375 | s~' km ™2 and minima down to 0.002 | s~' km ™2 Annual discharge ranges
from 57 mm to 1729 mm, with RR between 0.08 and 0.72, BFI between 0.41 and 0.96, and R2FDC between
—3.33 and —0.36.
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Many hydrological indices tend to be positively skewed and, in general, similar magnitudes in the hydrolog-
ical responses are grouped by site (Figures 1 and 3). This confirms the established idea that paired catch-
ments, which are physically similar and generally collocated, will provide similar responses unless an
external driver, such as LUCC, affects their hydrological behavior. Because several indices depend on the
same data and similar calculation, for instance RR and DIFF, RBI1 and RB2, or QDMY and QDML (due to the
short streamflow records used that omit interannual variations), they are closely correlated. Hydrological
indices from Olden and Poff [2003] show high variability among catchments. Those derived from high and
low flow pulses (e.g., MH22 or FL3) result in several null values attributed to thresholds that are too high
(e.g., 3 or 7 times the median flow) or too low (e.g., 5% of the mean flow).

4.2, Redundancy Analysis and Selection of Variables for Regionalization

While physical and climatic characteristics are relatively independent between different categories, some are
correlated within each group because they are functions of the same variables. Most shape descriptors are
based on AREA and PER, for instance, so p = £1 between CC, KF2, and RC. Similarly, p-values <0.05 occur
between properties that are combinations of others (e.g., as expected from the Hargreaves formula, LAT,
ETYEAR, and RPPE are redundant) or that are highly intrinsically related (e.g., elevations and rainfall intensities).
Meteorological parameters (ETYEAR, PYEAR, RPPE) are highly correlated to rainfall variability (PVAR, DAYPO,
PMDRY, SINDX) and intensities (RMED, iMAX), suggesting that although several descriptors can be derived
from precipitation data, they provide highly interdependent information. The 7 LUC variables were judged to
be independent from other descriptors and between them, resulting in |p| <0.6 (far below the threshold of
+0.75 [Yadav et al., 2007]), although some occurrences of p-values <0.05 were observed.

We retained two descriptors from each category that are relatively independent between them yet share
information with the discarded properties. Exceptions were elevations and rainfall intensities from which
only one descriptor was extracted from each group. This resulted in a reduced set of 10 catchment proper-
ties, excluding LUGC, to be used in the regionalization. Because of the varying degrees of interdependency
between hydrological indices [Olden and Poff, 2003], the complete set of 50 indices was used in the first
step of the regionalization exercise, from which only 3 representative indices were retained for validation.
Figure 4 shows the univariate relationships, p and p-value between the 10 descriptors and the 3 hydrologi-
cal indices. In general, the histograms show distributions with no obvious bias.

4.3. Performance and Validation of the Regional Models

We find evident differences in performance due to the explicit incorporation of LUC variables as predictors in
the derivation of regional models. Without them, out of the 50 hydrological indices tested, only 20% have Rgdj
above the acceptable threshold of 0.6. The success in performance increases to 48% after including LC, and to
66% with the complete LUC set (Table 1). Even though some regressions remained below the threshold, 72%
of the 50 indices show a positive change in Rﬁdj (improvement success) when adding LC. On top of that, the
addition of LU further improves the Rgdj for 74% of the 50 indices (Table 1). Because the relationships are out-
puts of a stepwise regression, this improvement in model performance reflects the statistical significance of
LUC variables to explain the hydrological response of the catchments. This suggests that it is possible to sepa-
rate LUCC impacts from natural variability, and thus to regionalize them. However, the predictability of some
of the indices is still challenging; for instance, DH15, TH3, and RA5 did not improve after the inclusion of LUC
variables, while QDMIN, K, DL17, and TL1 remained far below the acceptable threshold.

Figure 5 illustrates the results for the 3 selected hydrological indices. The plots show the index observations
used to develop the regressions (x-axis) against those estimated from the regional relationships (y-axis)
with a 95% confidence interval. In the case of the RR, the regressions have significant Rgdj values of 0.68
without LUC variables (left), 0.67 adding LC (middle), and 0.88 with LUC variables (right). Although the per-
formance is slightly impaired when LC is part of the descriptor set, the model considerably improves when
LU is also added. Therefore, the difference in water yield between paired catchments is more accurately rep-
resented when all LUC variables are considered. A different trend is observed for the BFI, in which Rgdj
increases from 0.22 (without LUC variables) to 0.58 (adding LC) and up to 0.77 (with LUC variables).
Although a progressive improvement in performance is observed as Rgdj only depends on the predictand
variable, uncertainty may also escalate as the confidence intervals depend on the predictor variables as

well. This can be noticed by an increase in A for BFI when only LC is part of the model structure (Figure 5).
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Table 1. Performance and Improvement of Regional Models by Adding Land Use and Land Cover

No LUC Variables With LC Variables With LUC Variables

Hydrological Index? Statistical Significance®< Ry Change® Ry Change® Ry
QDMIN ** 0.00 0.00 + 033
Q95 0.08 " 0.16 aF 0.52
QMDRY x 0.54 0.54 + 0.93
QDMAX o 0.79 0.79 ar 0.86
Q10 xx 0.82 + 0.86 + 0.87
QDMY e 0.93 " 0.93 aF 0.98
QDML x 0.89 0.89 + 0.95
Q50 e 0.72 0.72 ar 0.90
[BFI] * 0.22 + 0.58 + 0.77
K ** 0.37 aF 0.41 037
RANGE 0.00 + 0.40 0.40
[R2FDC] * 0.21 aF 0.86 0.86
IRH 0.20 + 0.65 0.65
RBI1 0.27 W 0.49 3 0.84
RBI2 0.27 + 0.48 + 0.84
DRYQMEAN ** 0.46 aF 0.70 ar 0.76
DRYQWET xx 0.45 + 0.64 + 0.74
QYEAR ek 0.91 0.90 3 0.97
[RR] x 0.68 0.67 + 0.88
MAS5 0.12 aF 0.72 ar 0.76
MA41 xx 0.84 + 0.85 + 0.91
MA3 * 0.31 W 0.55 3 0.58
MA11 0.11 + 0.74 + 0.77
ML17 0.12 aF 0.40 ar 0.46
ML21 0.26 + 0.67 0.67
ML18 * 033 " 0.69 0.69
MH16 * 0.13 + 0.74 + 0.78
MH14 * 0.13 aF 0.59 ar 0.72
MH22 0.09 + 0.67 + 0.70
MH27 * 0.00 " 0.69 aF 0.77
FL3 ** 0.00 + 0.53 0.53
FL1 ** 0.38 aF 0.52 ar 0.62
FH3 ** 0.45 0.45 + 0.53
FH6 ** 043 043 2 0.56
FH7 x 0.58 0.55 + 0.66
FH1 e 0.53 0.53 ar 0.65
DL17 ** 0.26 + 0.34 0.34
DL16 e 0.62 0.62 2 0.70
DL13 * 0.17 + 0.70 + 0.75
DH13 0.09 aF 0.68 ar 0.78
DH16 * 0.22 + 0.27 + 0.58
DH20 e 0.70 W 0.78 0.78
DH15 ** 0.46 + 0.46 0.46
TH3 * 0.13 0.13 0.13
TL2 * 0.14 + 0.24 + 0.55
TL1 e 0.00 W 0.19 0.18
RA8 ** 043 + 0.46 + 0.56
RA6 ** 0.35 aF 0.55 ar 0.70
RA5 ** 0.38 0.38 0.38
RA7 ** 0.38 aF 0.65 aF 0.68
Performance success® 20% 48% 66%
Improvement success 72% 74%

See Figure 3 for definitions of the hydrological indices. The 3 indices selected for validation are in bold and brackets [].
PFor No LUC variables: p-value thresholds of <0.001 (***), <0.01 (**), <0.05 (*), and >0.05 (blank).

For the 3 model structures: when p-value <0.001, numbers are in bold.

9A cross (+) represents positive change in Rﬁdj with respect to the model at its left.

€Given by the percentage of models with Rgdjzo.so.

fGiven by the percentage of models that increased their Razdj with respect to the model at its left.

In the case of the R2FDC, Rgdj significantly increases from 0.21 (without LUC variables) to 0.86 (adding LC).

However, the further inclusion of LU does not produce any improvement.
Results of the leave-one-out cross-validation for the 3 selected indices are shown in Table 2 and Figure 6.

The ranges in Rgdj indicate consistency in the results of the regionalization when one catchment is excluded
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Figure 5. Linear regression results for the 3 selected hydrological indices: (top) runoff ratio (RR), (middle) base flow index (BFl), and (bottom) slope of the flow duration curve (R2FDC);
(left) without land use and cover variables, (middle) adding land cover only, and (right) additionally including land use. The x axis corresponds to the index value calculated from each
catchment time series; the y axis corresponds to the estimated value from the regional models; the squares color-coding relates to each catchment location in Figure 1; the gray lines

correspond to the 95% confidence interval for each estimation.

yet the model structures obtained with the complete set are fixed. On the other hand, although the average
A decreases when LUC variables are added by 14% for the RR and by 45% for the R2FDC, it increases by
41% for the BFI. Shrinking the width of confidence bounds helps decreasing uncertainty in estimations;
however, these results also highlight the difficulty of obtaining robust regional relationships with few data.
Nevertheless, the mean absolute error (MAE) reduces when adding LUC variables by 41% (RR), 59% (BFI),
and 58% (R2FDC). Similarly, the variance of the residuals (VAR) considerably decreases as a result of this
improvement in model structure by 70% (RR), 82% (BFI), and up to 84% (R2FDC).
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Table 2. Results of the Leave-One-Out Cross-Validation for the Three Selected Hydrological Indices

Regional Model Structure Statistics RR? BFI? R2FDC?
No LUC variables Rﬁdj range® 0.64-0.65 0.13-0.19 0.17-0.33
Delta range® 0.07-0.18 0.06-0.17 0.29-0.89
MAE 0.0815 0.1157 04768
VAR® 0.0125 0.0188 04117
With LC variables RZ; range® 0.64-0.65 0.56-0.63 0.85-0.87
Delta range® 0.08-0.18 0.07-0.16 0.17-0.37
MAE® 0.0804 0.0715 0.2014
VAR® 0.0126 0.0082 0.0653
With LUC variables RZ; range® 0.87-0.87 0.74-0.8 0.85-0.87
Delta range® 0.07-0.13 0.08-0.15 0.17-0.37
MAE® 0.0477 0.0471 0.2014
VAR® 0.0037 0.0033 0.0653

#Runoff ratio (RR); baseflow index (BFI); slope of the flow duration curve (R2FDC).

bRﬁdj range between the minimum and maximum performance values obtained from the set of validation models.

A range between the minimum and maximum widths of the 95% confidence interval from the set of validation models.
4Mean absolute error (mean of the residuals between observation and prediction for each excluded catchment).
®Variance of the residuals (between observation and prediction for each excluded catchment).

5. Discussion

This paper describes the potential of a paired catchment monitoring network to provide statistically robust,
regionalized predictions of LUCC impact in an environment of high hydrological variability such as the Trop-
ical Andes. Instead of performing a classic pairwise statistical analysis [e.g., Buytaert et al, 2007;
Ochoa-Tocachi et al,, 2016], we focus on using paired catchments to increase the contrast of LUC variables
and capture LUCC signals in the regionalized hydrological responses. The collocation of catchments minimizes
climatic differences between pairs, which at the same time are selected in such way that their physical charac-
teristics are as similar as possible [Célleri et al., 2010]. The paired catchment monitoring setup applied to the
common regionalization procedure is a novel contribution of this study for both approaches. Furthermore,
our results contrast with earlier studies that found weak or ambiguous signals of LUCC effects on the regres-
sions based on ‘conventional’ catchment sets [e.g., Visessri and Mcintyre, 2016].

We find that the explicit incorporation of LUC variables as predictors in the derivation of regional models
increases regression performance (Rgdj >0.6) for 66% out of 50 hydrological indices tested. The resulting
regional models for the 3 indices selected by their hydrological relevance (RR, BFIl, and R2FDC) are shown in
Table 3. The importance of different descriptors changes as the model structure is modified and, although
there is no evidence of ambiguous results (e.g., inversion of coefficient signs between models), any physical
explanation needs cautious interpretation. For instance, shape is expressed by RC and RE and both
approach 1 as the catchment approaches a circle [Schumm, 1956]. In contrast to RC, which is a function of
AREA and PER, RE is inversely proportional to the maximum length parallel to the principal stream (LPL). As
a result, RC keeps a positive relation to RR (circularity would favor water yield), while RE would diminish
both RR and R2FDC (i.e., a smaller water storage in short catchments may affect the long-term hydrological
regulation). Similar to the results of Visessri and McIntyre [2016], elevation is necessary to explain the RR and
BFI, which is possibly due to its relation to soil properties. Correa et al. [2016] have found that in mountain-
ous catchments of southern Ecuador, hydrological responses are highly influenced by soils, but the effect of
geology cannot be distinguished. Although soil data in this region is scarce, Buytaert et al. [2005] have pre-
sented general trends that link soil properties to high- elevation and rainfall. Additionally, southern catch-
ments (Figure 1), where rainfall seasonality is strong and water yield is generally low, are commonly located
at higher elevations than their counterparts further north [Ochoa-Tocachi et al., 2016]. Other interesting
results are those of the meteorological descriptors. As expected, the wetness excess in the water balance
(explained by RPPE) is positively related to RR and BFI, while rainfall intensities (RMED1D) negatively affect
the short-term hydrological regulation. Furthermore, in those catchments where an important number of
months lack precipitation, virtually the totality of the streamflow is sustained by a baseflow-dominated
regime, which may explain the positive relation between SINDX and BFI.

The effects of LUCC in Andean catchments [see e.g., Buytaert et al., 2006a,; Célleri and Feyen, 2009; Célleri,
2010; Crespo et al., 2010; Ochoa-Tocachi et al., 2016] are clearly reflected in the 3 regional relationships.
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Figure 6. Histograms of the regression residuals resulting from the leave-one-out cross-validation for the 3 selected hydrological indices: (top) runoff ratio (RR), (middle) base flow
index (BFI), and (bottom) slope of the flow duration curve (R2FDC); (left) without land use and cover variables, (middle) adding land cover only, and (right) additionally including land
use. The grey bars correspond to the difference between the actual observation and the regional prediction, and the white bars are for the 95% confidence interval in the
predictions.

Vegetation cover (LCgrass, LCrorest), especially the percentage of tall flora, affects negatively water
yield (RR) but favors the long-term hydrological regulation (R2FDC). Forested catchments are often associ-
ated to a trade-off between high water consumption rates and enhanced soil infiltration by tree roots
[Bruijnzeel, 2004; Buytaert et al. 2007; Crespo et al., 2012; Beck et al., 2013a]. The negative relation between
LCwetLanp and BFI should be treated with care, although it is likely because of a reduced soil storage
capacity that favors the occurrence of saturation excess overland flow. Although Visessri and Mcintyre
[2016] suggested the possibility that swamps and wetlands may reduce the RR for a group of catchments
in Thailand, Mosquera et al. [2015] have found clear positive correlations between the extent of perma-
nently near-saturation zones and water yield in Andean catchments.
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Table 3. Regional Models for the Three Selected Hydrological Indices

No LUC Variables With LC Variables With LUC Variables
Descriptors? RR® BFI° R2FDC RR® BFI° R2FDCP RR® BFI® R2FDCP
Intercept 0.1182 0.5937 1.7920 0.0910 0.7745 —6.1652 1.3660 1.0543 —6.1652
RC 0.8130 0.7320 —0.5817 0.5327
RE —0.4578 —0.3902 —0.8819 —0.2576 —0.8819
DD 0.3564
FR —0.0592 0.0647 —0.0649 0.0839
HMEAN —0.8851 —-0.2188 —0.1760
SLPE2
SVAR 1.0482 1.0482
RPPE 0.2003 0.3093 0.2081 0.4639
SINDX 0.7827 1.1156
RMED1D 0.0054 —0.0060 —-0.0114
\Cempes 0.0560 —0.0050 —0.0023 0.0560
L Creresr 0.0540 —0.0079 0.0540
\Comnmm —0.0180 -0.0185
LUy 0.1381 0.0760
LUA 0.0991 -0.1213
LUg -0.1117
LU¢ —0.2424

See Figure 2 for definitions of the catchment properties.
PRunoff ratio (RR); baseflow index (BFI); slope of the flow duration curve (R2FDC).

Signals of land use are also evident in the derived relationships. In natural catchments (LUy), both RR and
BFI are expected to increase with respect to their altered pairs. Although in temperate catchments, a lower
RR may be often associated to a conservation management [e.g., Brown et al., 2005], studies in natural Tropi-
cal Andean catchments have reported runoff ratios between 0.50 and 0.70 [Buytaert et al., 2006a,; Ochoa-
Tocachi et al., 2016]. Even though Padrén et al. [2015] argue that tipping-bucket rain gauges may underesti-
mate the contribution of drizzle to total precipitation in these ecosystems, this error would be smaller than
15%. Agriculture (LU,) is related positively to RR and negatively to BFI, which is consistent to the attributed
impacts of artificial drains and soil hydraulic conductivity that enhance the catchment drainage [Buytaert
et al., 2004, 2005, 2007; Crespo et al., 2010]. Grazing (LUg) is found to be negatively related to RR. The graz-
ing extent is linked to forest cover removal [Molina et al., 2015] and, in contrast to the common expectation
[see also Bosch and Hewlett, 1982; Bearup et al., 2014; Livneh et al., 2015], Adams et al. [2012] and Biederman
et al; [2015] have reported that water yield following tree die-off can potentially decrease rather than
increase and, similarly, Crespo et al. [2010] have also observed water yields 15% lower in grazed Andean
catchments than in their natural counterparts. The impacts of livestock, however, depend on the animal
density, and have been associated to soil compaction affecting water regulation [Diaz and Paz, 2002; Qui-
chimbo, 2008]. Nonetheless, this descriptor is neither in BFI nor in R2FDC regional models, which suggests
that its effects may pass unnoticeable in aggregated indices [see also Crespo et al., 2011; Ochoa-Tocachi
et al, 2016]. Lastly, in forested catchments (LUg), the BFI appears to be impaired. This contrasts to the
expected improvement in hydrological regulation due to an enhanced soil infiltration caused by tree roots;
however, the apparent role of exotic plantations to control catchment regulation (e.g., flooding) is still
under debate [Célleri, 2010]. Negative hydrological impacts of exotic pine plantations in Andean catchments
have also been reported by Buytaert et al. [2007], Crespo et al. [2010], and Ochoa-Tocachi et al. [2016].

Under the leave-one-out cross-validation of the regional models, we find that LUC variables significantly
increase their predictive capacity and reduce the prediction uncertainty. For the 3 tested indices, on aver-
age, the mean absolute error was reduced by 53% and the variance of the residuals by 79%. In the case of
the R2FDC, the main enhancement was observed when adding LC rather than LU, which suggests that veg-
etation (and possibly its effects on soil structure) is the principal driver for controlling the distribution of
flows [see e.g., Brown et al., 2005]. On the other hand, the RR regression was slightly impaired when adding
LG; yet after including all LUC variables, both model performance and predictive capacity increased. The his-
tograms in Figure 6 show that the distributions of the residuals for the 3 indices better approximate a nor-
mal distribution when LUC variables are added to the models. This not only satisfies the main assumption
of linear regression [Freedman, 2009], but demonstrates that the inclusion of LUC variables improves the
model structure making linear relationships more suitable for regionalization. The remaining uncertainty in
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index predictions, which is due to different error sources [Kjeldsen and Jones, 2010], possibly includes
LUC differences at an intra-catchment scale. Distributed information of different variables (e.g., soils, land
use, climatologies [Boorman et al., 1995; Chu et al., 2010; Manz et al., 2016]) is needed for improving region-
alization, especially in mountain regions [Visessri and McIntyre, 2016]. In practice, in the absence of data,
using regionalized estimations may provide relevant knowledge to evaluate the hydrological impacts of dif-
ferent watershed management practices and rapidly feed results into the decision-making process.

6. Conclusions

In order to link LUCC signals to catchment hydrological response, we applied a regional analysis that relates
a set of hydrological indices to physical and climatic descriptors using a network of collocated, paired catch-
ments. Our model is effectively a regionalization procedure that is thought to be more powerful than pair-
wise comparisons and evidence-based approaches separately. The collocation of catchments in the
monitoring setup is meant to increase the contrast of LUC variables and to minimize climatic and physical
differences between pairs. We find that the explicit inclusion of LUC variables in the derivation of regional
regressions clearly improves model performance and predictive capacity, while reduces uncertainty in pre-
dictions. By treating each catchment as ‘ungauged’ during the validation process yet still keeping its pair
with similar physical characteristics as part of the regionalization, we attribute the increasing accuracy in
hydrological index predictions to the LUC information added by the other contrasting pairs. A promising
route for further research may include a sensitivity analysis of performance to the number and nature of
pairs included in the regionalization.

Furthermore, this methodology can be applied to evaluate ungauged catchments, in which physical and cli-
matic descriptors may be available but streamflow time series are absent. Robust extrapolation to unga-
uged catchments can be improved, including an adequate quantification of uncertainty, if reliable regional
regression models can be obtained from a sensible number of distributed, collocated catchments covering
different ecosystems, characteristics, and contrasting LUC types. Predicted hydrological responses in the
ungauged catchment can be compared between different LUC regimes using regionalized hydrological
indices. This is a useful approach to generate information about the impact of LUCC on the hydrology of
data-scarce regions, with potential application in other regions of the world.

Lastly, when using index predictions, for example, for constraining a rainfall-runoff model in ungauged
catchments, different streamflow responses are expected to represent and impact on particular parts of the
hydrograph [Yadav et al., 2007]. Modeling these different parts would unlikely achieve good performance
unless specific criteria are included in the conditioning [Wagener and Mcintyre, 2005; Bulygina et al., 2012]. A
sensible combination of hydrological indices should provide a better predictive uncertainty constraint than
using individual characteristics [Almeida et al.,, 2016]. The present study demonstrates that the inclusion of
LUC variables in regionalization exercises effectively improves regression performance for most of the
hydrological indices that characterize different features of the flow. This reflects the impacts of LUCC on the
hydrological response, and thus potentially increases predictions in ungauged basins.
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